\(\int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx\) [1307]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 154 \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {2 \left (a^2-b^2\right )^{3/2} \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{a^4 d}-\frac {b \left (3 a^2-2 b^2\right ) \text {arctanh}(\cos (c+d x))}{2 a^4 d}+\frac {\left (4 a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d} \]

[Out]

2*(a^2-b^2)^(3/2)*arctan((b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))/a^4/d-1/2*b*(3*a^2-2*b^2)*arctanh(cos(d*x+c
))/a^4/d+1/3*(4*a^2-3*b^2)*cot(d*x+c)/a^3/d+1/2*b*cot(d*x+c)*csc(d*x+c)/a^2/d-1/3*cot(d*x+c)*csc(d*x+c)^2/a/d

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2804, 3134, 3080, 3855, 2739, 632, 210} \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}+\frac {2 \left (a^2-b^2\right )^{3/2} \arctan \left (\frac {a \tan \left (\frac {1}{2} (c+d x)\right )+b}{\sqrt {a^2-b^2}}\right )}{a^4 d}-\frac {b \left (3 a^2-2 b^2\right ) \text {arctanh}(\cos (c+d x))}{2 a^4 d}+\frac {\left (4 a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d} \]

[In]

Int[Cot[c + d*x]^4/(a + b*Sin[c + d*x]),x]

[Out]

(2*(a^2 - b^2)^(3/2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^4*d) - (b*(3*a^2 - 2*b^2)*ArcTanh[Co
s[c + d*x]])/(2*a^4*d) + ((4*a^2 - 3*b^2)*Cot[c + d*x])/(3*a^3*d) + (b*Cot[c + d*x]*Csc[c + d*x])/(2*a^2*d) -
(Cot[c + d*x]*Csc[c + d*x]^2)/(3*a*d)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[2*(e/d), Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 2804

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^4, x_Symbol] :> Simp[(-Cos[e + f*x])*(
(a + b*Sin[e + f*x])^(m + 1)/(3*a*f*Sin[e + f*x]^3)), x] + (-Dist[1/(6*a^2), Int[((a + b*Sin[e + f*x])^m/Sin[e
 + f*x]^2)*Simp[8*a^2 - b^2*(m - 1)*(m - 2) + a*b*m*Sin[e + f*x] - (6*a^2 - b^2*m*(m - 2))*Sin[e + f*x]^2, x],
 x], x] - Simp[b*(m - 2)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(6*a^2*f*Sin[e + f*x]^2)), x]) /; FreeQ[{a
, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1] && IntegerQ[2*m]

Rule 3080

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}-\frac {\int \frac {\csc ^2(c+d x) \left (2 \left (4 a^2-3 b^2\right )-a b \sin (c+d x)-3 \left (2 a^2-b^2\right ) \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{6 a^2} \\ & = \frac {\left (4 a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}-\frac {\int \frac {\csc (c+d x) \left (-3 b \left (3 a^2-2 b^2\right )-3 a \left (2 a^2-b^2\right ) \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{6 a^3} \\ & = \frac {\left (4 a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}+\frac {\left (b \left (3 a^2-2 b^2\right )\right ) \int \csc (c+d x) \, dx}{2 a^4}+\frac {\left (a^2-b^2\right )^2 \int \frac {1}{a+b \sin (c+d x)} \, dx}{a^4} \\ & = -\frac {b \left (3 a^2-2 b^2\right ) \text {arctanh}(\cos (c+d x))}{2 a^4 d}+\frac {\left (4 a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}+\frac {\left (2 \left (a^2-b^2\right )^2\right ) \text {Subst}\left (\int \frac {1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^4 d} \\ & = -\frac {b \left (3 a^2-2 b^2\right ) \text {arctanh}(\cos (c+d x))}{2 a^4 d}+\frac {\left (4 a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}-\frac {\left (4 \left (a^2-b^2\right )^2\right ) \text {Subst}\left (\int \frac {1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^4 d} \\ & = \frac {2 \left (a^2-b^2\right )^{3/2} \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{a^4 d}-\frac {b \left (3 a^2-2 b^2\right ) \text {arctanh}(\cos (c+d x))}{2 a^4 d}+\frac {\left (4 a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(350\) vs. \(2(154)=308\).

Time = 6.09 (sec) , antiderivative size = 350, normalized size of antiderivative = 2.27 \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {2 \left (a^2-b^2\right )^{3/2} \arctan \left (\frac {\sec \left (\frac {1}{2} (c+d x)\right ) \left (b \cos \left (\frac {1}{2} (c+d x)\right )+a \sin \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {a^2-b^2}}\right )}{a^4 d}+\frac {\left (4 a^2 \cos \left (\frac {1}{2} (c+d x)\right )-3 b^2 \cos \left (\frac {1}{2} (c+d x)\right )\right ) \csc \left (\frac {1}{2} (c+d x)\right )}{6 a^3 d}+\frac {b \csc ^2\left (\frac {1}{2} (c+d x)\right )}{8 a^2 d}-\frac {\cot \left (\frac {1}{2} (c+d x)\right ) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{24 a d}+\frac {\left (-3 a^2 b+2 b^3\right ) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )}{2 a^4 d}+\frac {\left (3 a^2 b-2 b^3\right ) \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{2 a^4 d}-\frac {b \sec ^2\left (\frac {1}{2} (c+d x)\right )}{8 a^2 d}+\frac {\sec \left (\frac {1}{2} (c+d x)\right ) \left (-4 a^2 \sin \left (\frac {1}{2} (c+d x)\right )+3 b^2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{6 a^3 d}+\frac {\sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{24 a d} \]

[In]

Integrate[Cot[c + d*x]^4/(a + b*Sin[c + d*x]),x]

[Out]

(2*(a^2 - b^2)^(3/2)*ArcTan[(Sec[(c + d*x)/2]*(b*Cos[(c + d*x)/2] + a*Sin[(c + d*x)/2]))/Sqrt[a^2 - b^2]])/(a^
4*d) + ((4*a^2*Cos[(c + d*x)/2] - 3*b^2*Cos[(c + d*x)/2])*Csc[(c + d*x)/2])/(6*a^3*d) + (b*Csc[(c + d*x)/2]^2)
/(8*a^2*d) - (Cot[(c + d*x)/2]*Csc[(c + d*x)/2]^2)/(24*a*d) + ((-3*a^2*b + 2*b^3)*Log[Cos[(c + d*x)/2]])/(2*a^
4*d) + ((3*a^2*b - 2*b^3)*Log[Sin[(c + d*x)/2]])/(2*a^4*d) - (b*Sec[(c + d*x)/2]^2)/(8*a^2*d) + (Sec[(c + d*x)
/2]*(-4*a^2*Sin[(c + d*x)/2] + 3*b^2*Sin[(c + d*x)/2]))/(6*a^3*d) + (Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/(24*
a*d)

Maple [A] (verified)

Time = 0.46 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.45

method result size
derivativedivides \(\frac {\frac {\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2}}{3}-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a b -5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2}+4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{2}}{8 a^{3}}+\frac {\left (16 a^{4}-32 a^{2} b^{2}+16 b^{4}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{8 a^{4} \sqrt {a^{2}-b^{2}}}-\frac {1}{24 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {-5 a^{2}+4 b^{2}}{8 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}+\frac {b}{8 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {b \left (3 a^{2}-2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a^{4}}}{d}\) \(223\)
default \(\frac {\frac {\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2}}{3}-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a b -5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2}+4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{2}}{8 a^{3}}+\frac {\left (16 a^{4}-32 a^{2} b^{2}+16 b^{4}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{8 a^{4} \sqrt {a^{2}-b^{2}}}-\frac {1}{24 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {-5 a^{2}+4 b^{2}}{8 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}+\frac {b}{8 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {b \left (3 a^{2}-2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a^{4}}}{d}\) \(223\)
risch \(-\frac {-12 i a^{2} {\mathrm e}^{4 i \left (d x +c \right )}+6 i b^{2} {\mathrm e}^{4 i \left (d x +c \right )}+3 a b \,{\mathrm e}^{5 i \left (d x +c \right )}+12 i a^{2} {\mathrm e}^{2 i \left (d x +c \right )}-12 i b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-8 i a^{2}+6 i b^{2}-3 a b \,{\mathrm e}^{i \left (d x +c \right )}}{3 d \,a^{3} \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{3}}+\frac {3 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{2 a^{2} d}-\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{a^{4} d}+\frac {\sqrt {-a^{2}+b^{2}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a +\sqrt {-a^{2}+b^{2}}}{b}\right )}{d \,a^{2}}-\frac {\sqrt {-a^{2}+b^{2}}\, b^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a +\sqrt {-a^{2}+b^{2}}}{b}\right )}{d \,a^{4}}-\frac {\sqrt {-a^{2}+b^{2}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a -\sqrt {-a^{2}+b^{2}}}{b}\right )}{d \,a^{2}}+\frac {\sqrt {-a^{2}+b^{2}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a -\sqrt {-a^{2}+b^{2}}}{b}\right ) b^{2}}{d \,a^{4}}-\frac {3 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{2 a^{2} d}+\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{a^{4} d}\) \(417\)

[In]

int(cos(d*x+c)^4*csc(d*x+c)^4/(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(1/8/a^3*(1/3*tan(1/2*d*x+1/2*c)^3*a^2-tan(1/2*d*x+1/2*c)^2*a*b-5*tan(1/2*d*x+1/2*c)*a^2+4*tan(1/2*d*x+1/2
*c)*b^2)+1/8/a^4*(16*a^4-32*a^2*b^2+16*b^4)/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^
(1/2))-1/24/a/tan(1/2*d*x+1/2*c)^3-1/8*(-5*a^2+4*b^2)/a^3/tan(1/2*d*x+1/2*c)+1/8/a^2*b/tan(1/2*d*x+1/2*c)^2+1/
2/a^4*b*(3*a^2-2*b^2)*ln(tan(1/2*d*x+1/2*c)))

Fricas [A] (verification not implemented)

none

Time = 0.52 (sec) , antiderivative size = 633, normalized size of antiderivative = 4.11 \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\left [-\frac {6 \, a^{2} b \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 4 \, {\left (4 \, a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{3} + 6 \, {\left ({\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - a^{2} + b^{2}\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} + 2 \, {\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) \sin \left (d x + c\right ) - 3 \, {\left (3 \, a^{2} b - 2 \, b^{3} - {\left (3 \, a^{2} b - 2 \, b^{3}\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 3 \, {\left (3 \, a^{2} b - 2 \, b^{3} - {\left (3 \, a^{2} b - 2 \, b^{3}\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 12 \, {\left (a^{3} - a b^{2}\right )} \cos \left (d x + c\right )}{12 \, {\left (a^{4} d \cos \left (d x + c\right )^{2} - a^{4} d\right )} \sin \left (d x + c\right )}, -\frac {6 \, a^{2} b \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 4 \, {\left (4 \, a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{3} + 12 \, {\left ({\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - a^{2} + b^{2}\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \sin \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) \sin \left (d x + c\right ) - 3 \, {\left (3 \, a^{2} b - 2 \, b^{3} - {\left (3 \, a^{2} b - 2 \, b^{3}\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 3 \, {\left (3 \, a^{2} b - 2 \, b^{3} - {\left (3 \, a^{2} b - 2 \, b^{3}\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 12 \, {\left (a^{3} - a b^{2}\right )} \cos \left (d x + c\right )}{12 \, {\left (a^{4} d \cos \left (d x + c\right )^{2} - a^{4} d\right )} \sin \left (d x + c\right )}\right ] \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

[-1/12*(6*a^2*b*cos(d*x + c)*sin(d*x + c) - 4*(4*a^3 - 3*a*b^2)*cos(d*x + c)^3 + 6*((a^2 - b^2)*cos(d*x + c)^2
 - a^2 + b^2)*sqrt(-a^2 + b^2)*log(((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 + 2*(a*cos(d
*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2)
)*sin(d*x + c) - 3*(3*a^2*b - 2*b^3 - (3*a^2*b - 2*b^3)*cos(d*x + c)^2)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x +
c) + 3*(3*a^2*b - 2*b^3 - (3*a^2*b - 2*b^3)*cos(d*x + c)^2)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 12*(a^
3 - a*b^2)*cos(d*x + c))/((a^4*d*cos(d*x + c)^2 - a^4*d)*sin(d*x + c)), -1/12*(6*a^2*b*cos(d*x + c)*sin(d*x +
c) - 4*(4*a^3 - 3*a*b^2)*cos(d*x + c)^3 + 12*((a^2 - b^2)*cos(d*x + c)^2 - a^2 + b^2)*sqrt(a^2 - b^2)*arctan(-
(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c)))*sin(d*x + c) - 3*(3*a^2*b - 2*b^3 - (3*a^2*b - 2*b^3)*cos
(d*x + c)^2)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 3*(3*a^2*b - 2*b^3 - (3*a^2*b - 2*b^3)*cos(d*x + c)^2)
*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 12*(a^3 - a*b^2)*cos(d*x + c))/((a^4*d*cos(d*x + c)^2 - a^4*d)*si
n(d*x + c))]

Sympy [F]

\[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\int \frac {\cos ^{4}{\left (c + d x \right )} \csc ^{4}{\left (c + d x \right )}}{a + b \sin {\left (c + d x \right )}}\, dx \]

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**4/(a+b*sin(d*x+c)),x)

[Out]

Integral(cos(c + d*x)**4*csc(c + d*x)**4/(a + b*sin(c + d*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more de

Giac [A] (verification not implemented)

none

Time = 0.47 (sec) , antiderivative size = 273, normalized size of antiderivative = 1.77 \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\frac {a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 15 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 12 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{3}} + \frac {12 \, {\left (3 \, a^{2} b - 2 \, b^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{4}} + \frac {48 \, {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2}} a^{4}} - \frac {66 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 44 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 15 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 12 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 3 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a^{3}}{a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3}}}{24 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

1/24*((a^2*tan(1/2*d*x + 1/2*c)^3 - 3*a*b*tan(1/2*d*x + 1/2*c)^2 - 15*a^2*tan(1/2*d*x + 1/2*c) + 12*b^2*tan(1/
2*d*x + 1/2*c))/a^3 + 12*(3*a^2*b - 2*b^3)*log(abs(tan(1/2*d*x + 1/2*c)))/a^4 + 48*(a^4 - 2*a^2*b^2 + b^4)*(pi
*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)
*a^4) - (66*a^2*b*tan(1/2*d*x + 1/2*c)^3 - 44*b^3*tan(1/2*d*x + 1/2*c)^3 - 15*a^3*tan(1/2*d*x + 1/2*c)^2 + 12*
a*b^2*tan(1/2*d*x + 1/2*c)^2 - 3*a^2*b*tan(1/2*d*x + 1/2*c) + a^3)/(a^4*tan(1/2*d*x + 1/2*c)^3))/d

Mupad [B] (verification not implemented)

Time = 12.18 (sec) , antiderivative size = 654, normalized size of antiderivative = 4.25 \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,a\,d}-\frac {{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,a\,d}+\frac {5\,\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,a\,d}-\frac {5\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,a\,d}+\frac {3\,b\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{2\,a^2\,d}-\frac {b^3\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{a^4\,d}+\frac {b\,{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a^2\,d}-\frac {b^2\,\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,a^3\,d}-\frac {b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a^2\,d}+\frac {b^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,a^3\,d}+\frac {\mathrm {atan}\left (\frac {2\,a^5\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {-a^6+3\,a^4\,b^2-3\,a^2\,b^4+b^6}+8\,b^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {-a^6+3\,a^4\,b^2-3\,a^2\,b^4+b^6}-7\,a^3\,b^2\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {-a^6+3\,a^4\,b^2-3\,a^2\,b^4+b^6}-16\,a^2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {-a^6+3\,a^4\,b^2-3\,a^2\,b^4+b^6}+4\,a\,b^4\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {-a^6+3\,a^4\,b^2-3\,a^2\,b^4+b^6}+7\,a^4\,b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {-a^6+3\,a^4\,b^2-3\,a^2\,b^4+b^6}}{2{}\mathrm {i}\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^8-5{}\mathrm {i}\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^7\,b-16{}\mathrm {i}\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^6\,b^2+14{}\mathrm {i}\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^5\,b^3+34{}\mathrm {i}\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^4\,b^4-13{}\mathrm {i}\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^3\,b^5-28{}\mathrm {i}\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^2\,b^6+4{}\mathrm {i}\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a\,b^7+8{}\mathrm {i}\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,b^8}\right )\,\sqrt {-{\left (a+b\right )}^3\,{\left (a-b\right )}^3}\,2{}\mathrm {i}}{a^4\,d} \]

[In]

int(cos(c + d*x)^4/(sin(c + d*x)^4*(a + b*sin(c + d*x))),x)

[Out]

tan(c/2 + (d*x)/2)^3/(24*a*d) - cot(c/2 + (d*x)/2)^3/(24*a*d) + (5*cot(c/2 + (d*x)/2))/(8*a*d) - (5*tan(c/2 +
(d*x)/2))/(8*a*d) + (3*b*log(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(2*a^2*d) - (b^3*log(sin(c/2 + (d*x)/2)/c
os(c/2 + (d*x)/2)))/(a^4*d) + (b*cot(c/2 + (d*x)/2)^2)/(8*a^2*d) - (b^2*cot(c/2 + (d*x)/2))/(2*a^3*d) - (b*tan
(c/2 + (d*x)/2)^2)/(8*a^2*d) + (b^2*tan(c/2 + (d*x)/2))/(2*a^3*d) + (atan((2*a^5*cos(c/2 + (d*x)/2)*(b^6 - a^6
 - 3*a^2*b^4 + 3*a^4*b^2)^(1/2) + 8*b^5*sin(c/2 + (d*x)/2)*(b^6 - a^6 - 3*a^2*b^4 + 3*a^4*b^2)^(1/2) - 7*a^3*b
^2*cos(c/2 + (d*x)/2)*(b^6 - a^6 - 3*a^2*b^4 + 3*a^4*b^2)^(1/2) - 16*a^2*b^3*sin(c/2 + (d*x)/2)*(b^6 - a^6 - 3
*a^2*b^4 + 3*a^4*b^2)^(1/2) + 4*a*b^4*cos(c/2 + (d*x)/2)*(b^6 - a^6 - 3*a^2*b^4 + 3*a^4*b^2)^(1/2) + 7*a^4*b*s
in(c/2 + (d*x)/2)*(b^6 - a^6 - 3*a^2*b^4 + 3*a^4*b^2)^(1/2))/(a^8*sin(c/2 + (d*x)/2)*2i + b^8*sin(c/2 + (d*x)/
2)*8i + a*b^7*cos(c/2 + (d*x)/2)*4i - a^7*b*cos(c/2 + (d*x)/2)*5i - a^3*b^5*cos(c/2 + (d*x)/2)*13i + a^5*b^3*c
os(c/2 + (d*x)/2)*14i - a^2*b^6*sin(c/2 + (d*x)/2)*28i + a^4*b^4*sin(c/2 + (d*x)/2)*34i - a^6*b^2*sin(c/2 + (d
*x)/2)*16i))*(-(a + b)^3*(a - b)^3)^(1/2)*2i)/(a^4*d)